
Findings gained through computational physics

Findings gained through computational physicsa)

Daisuke Nishihamab)

Department of Physics, Saitama University, 338-8570, Japan

(Dated: 29 June 2022)

Computers have become indispensable in physics these days. Students learn how
to integrate numerically and how to solve ordinary differential equations, and the
errors are discussed in terms of their principles. Numerical calculations also have
their limits, and no matter how small the increments are made to increase the
number of calculations in order to improve accuracy, the error cannot be reduced
to zero. There is a danger of creating large errors, like a kind of butterfly effect. It
has also been found that the Runge-Kutta method sometimes exhibits a behavior
where the error rapidly decreases. This is a topic for future discussion.

Keywords: numeric calculation, physics, error, trapezoidal formula, Simpson for-
mal, Euler, Runge-Kutta

I. ALGORITHM PRINCIPLE

A. Numerical integration method

In the world of physics and mathematics, there are many integrals that cannot be solved
analytically, and the algorithms for numerically calculating them are explained below. Here,
the following integral that can be derived analytically is adopted as the true value, and the
error from it is examined.

I =

∫ π

0

sin θ dθ = 2 (1)

1. Algorithm by Trapezoidal rule

The integration interval [0, π] is divided into n equal parts, and f(x) is approximated to
be a straight line in each interval. Then, each parts becomes a trapezoid:

Ii ∼
h

2
{f(xi−1) + f(xi)} (2)

Ii+1 ∼ h

2
{f(xi) + f(xi+1)} (3)

Where h = (b− a)/n, x0 = a, xi = a+ ih, xn = b.
This can be introduced as:

I ∼ h

2
(f(x0) + 2f(x1) + 2f(x2) + · · · 2f(xn−1) + f(xn)) (4)

∼ h

(
f(a) + f(b)

2
+

n−1∑
i=1

f(a+ ih)

)
(5)

a)Experimental Physics IIa
b)Student ID: 20RP021

Findings gained through computational physics 2

2. Algorithm by Simpson’s rule

The Simpson’s rule divides the integration interval into 2n equal parts. This is called the
Simpson 1/3 formula. As a result, h = (b − a)/2n, so the interval with a width of 2h is
approximated by a quadratic function at three points.
If we donote f(x+ h)− f(x) by ∆f(x), then ∆2f(x) reads as follows:

∆(∆f(x)) = (f(x+ 2h)− f(x+ h))− (f(x+ h)− f(x)) (6)

and,

f(x) =
∑ h

3
(f(xi) + 4f(xi+1) + f(xx+2)) (7)

I ∼ h

3

(
f(a) + f(b) + 2

n−1∑
i=1

f(a+ 2ih) + 4

n∑
i=1

f(a+ (2i− 1)h)

)
(8)

Furthermore, the interval [a, b] is divided into 3n equal parts and complemented by a
cubic equation. This equation is called Simpson 3/8 formula, and it becomes as follows
from h = (b− a)/3n.

I ∼ 3h

8
(f(xi) + 3f(xi+1) + 3f(xi+2) + f(xi+3)) (9)

I ∼ 3h

8

(
f(a) + f(b) + 2

n−1∑
i=1

f(a+ 3ih)

+3

n∑
i=1

(f(a+ (3i− 1)h) + f(a+ (3i− 2)h))

)
(10)

The Simpson 3/8 formula can be numerically calculated with higher accuracy than the
Simpson 1/3 formula.

3. Error evaluation method

Define as f(xi) = fi, xi+1 = xi + h. Taylor expand fi near xi:

fi+1 = fi + hf ′
i +

h2

2!
f ′′
i +

h3

3!
f ′′′
i + · · · (11)

Therfore

f ′
i =

fi+1 − fi
h

− h

2
f ′′
i − h2

6
f ′′′
i − · · · (12)

Where integrating from x to xi+1

Ii =

∫ xi+1

xi

f(x) dx = hfi +
h2

2
+

h3

6
f ′′
i +

h4

24
f ′′′′
i + · · · (13)

Substituting equation (12) into equation (13):

Ii = h
fi+1 + fi

2
− h3

12
f ′′′
i · · · (14)

Findings gained through computational physics 3

The first term of Eq(14) corresponds to the trapezoidal rule, and the error per division
interval of the trapezoidal rule is proportional to h3. On the other hand, since the number
of intervals is proportional to 1/h, the error is proportional to h3 × 1/h = h2, that is,
proportional to h2.
Similarly, the error of the Simpson 1/3 formula is

Ii =
h

3
(fi + 4fi+1 + fi+2)−

h5

90
f ′′′
i+1 · · · (15)

when calculated by Taylor expansion for fi and fi+2. The error per interval is proportional
to h5, and the error over all intervals is proportional to h4. However, the error is zero when
the formula is cubic or less.

B. Debye Model

The Einstein model of lattice specific heat explains the transition of the specific heat of
real solids from high to low temperatures quite well.
However, experimentally, it is well known that the behavior of the specific heat of solids

at very low temperatures follows Debye’s cubic law C(T) ∝ T 3, which is at odds with
the Einstein model. Debye assumed that the forces acting on actual atoms are coupled
vibrations as a whole, and he considered a model in which atoms are connected by springs
like a chain, and gave them energy for lattice vibrations.
The quantized lattice vibration is called a phonon. Denoting the density of states D(E)

of the real phonon, if we let ωD be the upper limit of the frequency of the lattice vibration,
and furthermore let the total number of states coincide with 3N degrees of freedom, we
obtain the following Debye approximation.

D(E) =


9N

ℏω3
D

E2, E ≤ ℏωD

0, E > ℏωD

(16)

Substituting this into the formula for specific heat:

Cv =
9NkB

(βℏωD)3

∫ βℏωD

0

x4

(exp(x)− 1)(1− exp(−x))
dx (17)

Where beta = 1/(kBT), CD is Debye’s specific heat function, and the Debye temperature
is TD = ℏωD/kB , using βℏωD = TD/T = 1/t,

CD = 3t3
∫ 1/t

0

x4

(exp(x)− 1)(1− exp(−x))
dx ∼

{
1, t → 0
4π4

5 t3, t → +∞
(18)

Finally, Debye’s specific heat equation can be rearranged to:

Cv

NkB
= 3× 3t3

∫ 1/t

0

x4

(exp(x)− 1)(1− exp(−x))
dx (19)

Integrate Equation (19) and consider t in the interval [0,2].

C. Numerical solution of ordinary differential equations

Many of the laws of physics are described by differential equations, and by solving these
equations, the motion of objects can be accurately determined.

Findings gained through computational physics 4

By solving these equations, we can accurately determine the motion of an object. Here,
when the initial conditions x = x0, y = y0:

dy

dx
= f(x, y) (20)

Let us consider solving numerically the ordinary differential equation expressed by where
x0, x1, x2, · · · (x1 − x0 = x2 − x1 = h) and y corresponding to y0, y1, y2, · · · respectively,
then

yi+1 = yi +

∫ xi+1

xi

f(x, y) dx (21)

Let us solve the following ordinary differential equations using the Euler and Runge-Kutta
methods.

dy

dx
= 1− y (22)

1. Euler method

The Taylor expansion of equation (20) yields equation (23).

y(x0 + h) = y(x0) + hy′(x0) +
h2

2!
y′′(x0) +

h3

3!
y′′′(x0) + · · · (23)

where y(x0) = y0 and y′(x0) = f(x0, y0). Therefore, if h is sufficiently small, from equation
(23), y(x1) can be approximated by the following equation.

y1 = y0 + hf(x0, y0) (24)

Since this can be repeated, it can be calculated as follows.

yi+1 = yi + hf(xi, yi) (25)

This h is called the step size, and in the Euler method, it is approximated to the term of
h1.

2. Runge-Kutta method

The most used 4th-order Runge-Kutta method is as follows:

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4) (26)

Where, k1, k2, k3, and k4 are defined as follows:

k1 = f(x, y) (27)

k2 = f(xi +
h

2
, yi +

h

2
k1) (28)

k3 = f(xi +
h

2
, yi +

h

2
k2) (29)

k4 = f(xi + h, yi + hk3) (30)

Taylor expansion of k1, k2, k3, and k4, respectively, and coefficients 1/6 in Equation (26)
to match up to the term in h4. The coefficient of 2/6, 2/6, and 1/6 were obtained.

Findings gained through computational physics 5

D. Rutherford scattering

As an example of ordinary differential equations, consider Rutherford scattering: we
calculate the scattering by the 197Au (Au: atomic number 79) nucleus of the alpha ray
(energy 8.954 MeV) emitted from 212Po, which Geiger and Marsden actually tested. The
coordinates of the Au nucleus are the origin (x, y) = (0, 0), and the Coulomb force F acting
on the alpha particle is expressed in polar coordinates (r, θ) as:

F =
1

4πε0

ZαAAue
2

r2
(31)

The Cartesian coordinate component of F is r =
√
x2 + y2 as:

Fx = F cos θ = F
x

r
(32)

Fy = F sin θ = F
y

r
(33)

Newton’s equations describing the motion of the alpha particle are rewritten from Equa-
tion (34) to the simultaneous differential equations in Equation (37).

dvx
dt

=
ZαZAue

2

4πε0mα

x

r3
(34)

dvy
dt

=
ZαZAue

2

4πε0mα

y

r3
(35)

dx

dt
= vx (36)

dy

dt
= vy (37)

Where, the initial condition is:

vx(t = 0) =

√
2Eα

mα
, vy(t = 0) = 0 (38)

In addition to that, the following constant values are used in the calculation. Zα = 2,

ZAu = 79, mαc
2 = 375.7 MeV, e2

4πε0ℏc = 1
137.036 (Fine Structure Constant), ℏc = 197.327

(Mev·fm)

E. Machine Epsilon

Floating point is data of finite precision for the approximate representation of real num-
bers in a computer. Computers use the binary system, where one bit can be either a 0 or a
1. Floating point is typically 32-bit or 64-bit; the 32-bit case is called a float. The first bit
is called the sign, the next 8 bits are called the exponent part, and the remaining 23 bits
are called the mantissa part. It means that:

(sign)1.(mantissa portion)× 2(exponent portion) - 127 (39)

In the case of 64 bits (the type is called double in this case), the exponential part is 11
bits, and the mantissa part is the remaining 52 digits.
In the process of arithmetic with floating-point numbers, errors occur in order to fit

them into their significant digits. Thus, a number that sums to a power of 2, such as
2−1 + 2−2 + 2−3 = 0.875. But other numbers (e.g. 0.6) will contain rounding errors. We
now seek a machine epsilon.

Figure 1 shows a flowchart of the calculation algorithm.

Findings gained through computational physics 6

a > 1.0 ?e = 1.0 a = e + 1e = e/2

Yes

Done

No

FIG. 1. Flowchart of algorithm to derive machine epsilon

II. DEVELOPMENT NUMERICAL CALCULATION PROGRAM ENVIRONMENT

Multiple PCs were used for this experiment. Since the programs are compatible with
each other, no special preparations were made for each system. The following is an overview
of the main PC used.

Model Name: MacBook Pro
Model Identifier: MacBookPro12,1
Processor Name: Dual-Core Intel Core i5
Processor Speed: 2.9 GHz
Number of Processors: 1
Total Number of Cores: 2
L2 Cache (per Core): 256 KB
L3 Cache: 3 MB
Hyper-Threading Technology: Enabled
Memory: 16 GB
System Firmware Version: 428.60.3.0.0
SMC Version (system): 2.28f7

Where, the version of Python used is 3.9.2, and the version of the C compiler (GNU
Compiler Collection) is 11.2.0.

Figure 2 shows the development environment up to the point where the graph is drawn.

Perform numerical
calculations in C

Output execution
results to TXT file

Read TXT files in
Python and draw
them into graphs

FIG. 2. The process of drawing a graph

III. CALCULATION RESULTS

A. Numerical integration method

The results of the calculation according to Principle section IA are shown in Figure 3.
The trapezoidal formula is almost linear on both logarithmic graphs, as the error decreases

as Step Width h is decreased. On the other hand, the error in the Simpson formula does
not become small from around 10−3.
The results of the Debye model calculations are shown in Figure 4.

B. Numerical solution of ordinary differential equations

Ordinary differential equations were computed according to Principle Section IC. The
results are shown in Figure 5. The source code in the textbook reduces the range of x that

Findings gained through computational physics 7

10 5 10 4 10 3 10 2 10 1 100

Step Width h

10 19

10 16

10 13

10 10

10 7

10 4

10 1

Er
ro

r
Trapezoidal
Simpson's 1/3
Simpson's 3/8

h2

h4

FIG. 3. Errors of the trapezoidal and Simpson rule are compared. The dashed line shows the line
proportional to h2, and the dashdot line shows the line proportional to h4.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T/TD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C v
/(N

k B
)

Debye
T3

FIG. 4. Relationship between t and the value of the left-hand side of Equation (19). The dashed
line is proportional to the cube of temperature.

can be computed when the tick size h is reduced. Therefore, we modified Source Code 1 so
that the computable x can be fixed and contrasted.

A similar numerical calculation performed with the Runge-Kutta method is shown in
Figure 6.

In the Runge-Kutta method, while the error decreases as h is increased, there are several
places where the error is extremely small instantaneously when h = 10000, unlike when
h is other times. Also, the results of the calculation for Rutherford scattering using the
Runge-Kutta method are shown in Figure 7.

C. Machine Epsilon

The result of the calculation according to Principle Section I E was 2.22045e-16.

Findings gained through computational physics 8

h = 10
h = 10

h = 100

h = 1000
h = 1000

h = 10000

h = 10000

h = 100

FIG. 5. The error is plotted on the left vertical axis, and the analytical value, 1 − exp(−x), is
plotted on the right vertical axis with a dark black line. This makes it easy to see where the error
corresponds to on the curve. The increments h were 10, 100, 1000, and 10000. They are represented
by dashed and dotted gray lines.

h = 10
h = 10

h = 100
h = 100

h = 1000
h = 1000

h = 10000

h = 10000

FIG. 6. The error is plotted on the left vertical axis, and the analytical value, 1 − exp(−x), is
plotted on the right vertical axis with a dark black line. This makes it easy to see where the error
corresponds to on the curve. The increments h were 10, 100, 1000, and 10000. They are represented
by dashed and dotted gray lines.

IV. CONSIDERATION

A. Numerical integration method

The fact that the error of the Simpson formula is no longer smaller than that of the
trapezoidal formula when Step Width h is smaller than 10−3 is, in our opinion, a matter of
principle. Simpson’s formula is more accurate than the trapezoidal formula by approximat-
ing with higher order functions (quadratic and cubic functions), and when Step Width h is
made smaller, it no longer makes sense to approximate with higher order functions such as
quadratic and cubic functions. The curve should now appear as a straight line. This sug-

Findings gained through computational physics 9

2000 1500 1000 500 0 500 1000 1500 2000
x (fm)

400

200

0

200

400

y
(fm

)

FIG. 7. Forty-one calculations along the lines of equations (34) through (37) with collision co-
efficients from −200 to 200 in increments of 10 are shown in the figure. A point is dotted at
(x, y) = (0, 0).

gests that the error of Simpson’s formula is no longer smaller than that of the trapezoidal
formula when Step Width h is smaller than 10−3.

B. Numerical solution of ordinary differential equations

The situation in which the Runge-Kutta method can easily predict the next point is
when it is linear, in accordance with Principle Section IC. To verify this, we differentiated
1−exp(−x) and plotted the slope. A linear situation means that the change in slope should
be small. However, it does not correspond to that.

Therefore, it is thought to be due to something other than the principle of the Runge-
Kutta method.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

10 17

10 16

10 15

10 14

Er
ro

r Error
Slope of 1 exp(x)

0.0

0.2

0.4

0.6

0.8

1.0

1
ex

p(
x)

FIG. 8. From Figure 6, only h = 10000 was extracted, and the slope of 1 − exp(−x) was added.

Findings gained through computational physics 10

V. CONCLUSION

It was shown that even the Simpson formula has an error limit even when the increment h
is reduced. It should be well known that there is a danger that this can sometimes produce
large errors, such as the butterfly effect, because minute errors will remain. It would also be
good to investigate the cause of the sudden decrease in error in the Runge-Kutta method
in the future.

ACKNOWLEDGMENTS

I would like to express my gratitude to my friends for their advice and encouragement on
various occasions.

Appendix A: Source code used

Source Code 1. Modified source code from the Eulerian method section of the textbook

1 #include <stdio.h>

2 #include <math.h>

3
4 double calc_next_step(double ,double ,double (*)(double ,double),

double);

5
6 double f(double x, double y){

7 return (1.0-y);

8 }

9
10 int cac(int);

11
12 int main(void){

13 for(int j=1;j<10;j++){

14 int k = pow(10,j);

15 cac(k);

16 }

17 printf("Done!");

18 return 0;

19 }

20
21 double calc_next_step(double x, double y, double (*dydx)(double ,

double), double h){

22 return (y + h * dydx(x, y));

23 }

24
25 int cac(int N){

26 double x = 0.0, y = 0.0;

27 double xmax = 4.0;

28 double h = xmax/N;

29
30 FILE *fp;

31 char file [256];

32 sprintf(file , "eulerdata_ %0.2d.txt", N);

33 fp = fopen(file , "w");

34
35 for(x = 0; x < xmax; x = x + h){

36 fprintf(fp,"%8.4f%14.5e%14.5e%14.5e\n",x,y,1.0-exp(-x),

fabs(y - (1.0 - exp(-x))));

37 y = calc_next_step(x, y, f, h);

Findings gained through computational physics 11

38 }

39
40 fclose(fp);

41
42 return 0;

43 }

Source Code 2. Derive machine Epsilon

1 #include <stdio.h>

2 #include <math.h>

3
4 int main(void){

5 double a, _e;

6 double e = 1.0;

7 do{

8 _e = e;

9 e = e/2.0;

10 a = 1.0+e;

11 }while(a > 1.0);

12 printf("%.5e\n",_e);

13 }

	Findings gained through computational physicsError!
	Abstract
	I Algorithm principle
	A Numerical integration method
	1 Algorithm by Trapezoidal rule
	2 Algorithm by Simpson's rule
	3 Error evaluation method

	B Debye Model
	C Numerical solution of ordinary differential equations
	1 Euler method
	2 Runge-Kutta method

	D Rutherford scattering
	E Machine Epsilon

	II Development numerical calculation program environment
	III Calculation Results
	A Numerical integration method
	B Numerical solution of ordinary differential equations
	C Machine Epsilon

	IV Consideration
	A Numerical integration method
	B Numerical solution of ordinary differential equations

	V Conclusion
	 Acknowledgments
	A Source code used

